
nuts, the Java Package Manager

https://github.com/thevpc/nuts (git repo)

https://thevpc.github.io/nuts (website)

nuts.packagemanager@gmail.com

thevpc, 2025-01-04

nuts, the Java Package Manager

1

https://github.com/thevpc/nuts
https://github.com/thevpc/nuts
https://github.com/thevpc/nuts
https://github.com/thevpc/nuts
https://github.com/thevpc/nuts
https://thevpc.github.io/nuts
https://thevpc.github.io/nuts
https://thevpc.github.io/nuts
mailto:nuts.packagemanager@gmail.com

Plan

1. Why a package manager
2. nuts features
3. Demo

nuts, the Java Package Manager

2

1. Why a Package Manager

• Popularity of a language is proportional to popularity of its PM

◦ Javascript: npm/npx/yarn

◦ Python: pip, conda

◦ Ruby: rubygems
• Newcomer languages already include a PM

◦ golang package manager (modules)
• Java ecosystem already have more than 7M packages deployed

nuts, the Java Package Manager

3

1.1. Java Package Manager?

• maven, gradle

◦ Build tools

◦ Dependency-management tools

◦ Poor package/deployment management (maven 's deploy is a build
time stage)

◦ Lack of deployment lifecycle (install/uninstall/update)

nuts, the Java Package Manager

4

1.2. Example

Let’s take a hello-world example with dependencies :

package net.thevpc.nuts.doc.baseproject;

import org.slf4j.Logger;
import org.slf4j.LoggerFactory;

public class Main {
private static final Logger LOG = LoggerFactory.getLogger(Main.class);
 public static void main(String[] args) {
 LOG.debug("A simple app with dependencies. Won't work out of the box!,
unless...");
 }
}

nuts, the Java Package Manager

5

1.3. pom.xml

A minimal pom.xml is:

<?xml version="1.0" encoding="UTF-8"?><project xmlns="..."><modelVersion>
4.0.0</modelVersion>
<groupId>net.thevpc.nuts.doc</groupId>
<artifactId>base-project</artifactId>
<version>1.0-SNAPSHOT</version>
<dependencies>
<dependency>
 <groupId>ch.qos.logback</groupId>
 <artifactId>logback-classic</artifactId>
 <version>1.2.10</version>
</dependency>
</dependencies>
</project>

nuts, the Java Package Manager

6

1.4. Example

• With a minimal pom.xml we cannot execute unless we add the
transitive dependencies to the classpath

• We also need to adjust the pom.xml to include the main class too!

nuts, the Java Package Manager

7

1.5. Alternatives for deployment

• Java Web Start
• System PM / Installers
• jpackage, jlink
• Portable Installers
• Custom Deployments
• Build time Processors (Fat Jars)

nuts, the Java Package Manager

8

1.6. Java Web start

• Run Remote App using jnlp file (with all of it dependencies)
• Special packaging
• Execution Sandbox : More Limitations
• Deprecated!! since Java9
• No Shared Dependencies / Centralized Dep Mgt
• The same applies to alternatives : trivrost, OpenJNLP

nuts, the Java Package Manager

9

1.7. System PM / Installers

• rpm, deb, dmg, msi

◦ Native integration with OS/Env

◦ Centralized management

◦ Automatable (cmdline)

◦ Not portable

◦ Multiple deployment packages for each release

◦ Problem with installing multiple versions of the same package

nuts, the Java Package Manager

10

1.8. JPackage jlink

• rpm, deb, dmg, msi

◦ All System PM / Installers applies

◦ Not portable

◦ java 8- not supported

◦ requires all dependencies to be packaged as rpm/deb or be
bundled for each app

◦ JRE bundled each time!

nuts, the Java Package Manager

11

1.9. Portable Installers

• InstallAnywhere, GetDown, IzPack, BitRock InstallBuilder

◦ Good integration with OS/Env

◦ No centralized management

◦ Disk and network overload of dependencies

◦ Graphical! not suitable for automation (most of the time)

◦ Still Manual

nuts, the Java Package Manager

12

1.10. Custom Deployers

• Custom (tomcat, netbeans) with multiple formats (tarball, zip)

◦ Manual

◦ No centralized management

◦ Difficult to automate

◦ Lack of integration with environment

◦ Disk and network overload of dependencies

nuts, the Java Package Manager

13

1.11. Fat Packages: maven-dependency-plugin

• maven-dependency-plugin

◦ Maven plugin

◦ Jars included in the "lib" folder

◦ Still need to bundle the jar and the lib folder (zip with maven-
antrun-plugin)

nuts, the Java Package Manager

14

nuts, the Java Package Manager

15

nuts, the Java Package Manager

16

1.12. Fat Jars : Uber Jar

• maven-assembly-plugin

◦ Jars deflated into the same jar

◦ Can rewrite classes/resources
• maven-shade-plugin

◦ Jars deflated into the same jar

◦ Rewrites classes/resources

◦ Simpler than maven-assembly-plugin

nuts, the Java Package Manager

17

nuts, the Java Package Manager

18

nuts, the Java Package Manager

19

1.13. Fat Jars : Jar Jar

• onejar-maven-plugin

◦ Rewrites jar to include dependencies as jars!

◦ Adds bootstrap classes

◦ Changes classloader
• spring-boot-maven-plugin

◦ Rewrites jar to include dependencies as jars!

◦ Adds bootstrap classes

◦ Changes classloader

nuts, the Java Package Manager

20

nuts, the Java Package Manager

21

nuts, the Java Package Manager

22

1.14. So…

• All alternatives are poor and/or ugly
• pom.xml polluted with +16-20 lines of code
• Why do we need a package manager for Java
• Why don’t we already have a package manager for Java!

nuts, the Java Package Manager

23

2. nuts Package Manager for Java

Main Idea:

• Little to no Intrusion and Backward compatibility to support existing
apps and repos

• Good Integration with Java ecosystem and popular
build/deploy/devops tools

• Solid enough to support multiple platforms
• Simple but extensible
• Open Source

nuts, the Java Package Manager

24

2.1. nuts: A Package Manager for Java

• Centralized package manager for Java Apps and Libs (not only)

◦ install, uninstall, update, search and exec for packages

◦ Optimized dependency resolution solver

◦ Cache for dependencies across installed apps
• Automation/devops friendly commandline tool
• Portable across Architectures, OSes, OS Distibs, Desktop

Environments, Platforms (Java versions)
• Libre and Open Source, developed in java

nuts, the Java Package Manager

25

2.2. nuts: A Package Manager for Java

Is Not:

• a replacement for maven, gradle or any build tool (used at deploy time)
• a plugin for maven, gradle or any build tool (do not change the build

process)
• a replacement for spring framework or any other framework
• a replacement for IzPack or InstallAnywhere (but can do pretty

much of it)
• a replacement for ansible or chef (but is conceptually driven by

automation)
• a mere download tool

nuts, the Java Package Manager

26

2.3. nuts: Maven & Gradle

• Integrates seamlessly with maven

◦ No required modification of the build process

◦ Does not alter/rewrite the package

◦ No special maven/gradle plugin needed
• Supports local Jars, public packages (maven central), and private

packages (local .m2, nexus repos,…)
• Solves at runtime what maven/gradle solve at build time

◦ Supports maven and gradle dependency resolution algorithms,
scopes, …

nuts, the Java Package Manager

27

2.4. nuts: Dependency Optimization

• Downloads, Caches and Installs only relevant dependencies according
to

◦ arch (hardware architecture: x86, x64, relevant for native
dependencies)

◦ os (operating system: Win/Linux/Mac, relevant for specific tasks)

◦ osDist (operating distribution : Ubuntu/OpenSuse,…)

◦ desktop (desktop environment, relevant for icon/shortcut creation
and environment integration)

◦ platform (java SE versions installed to know what dependencies
to use)

nuts, the Java Package Manager

28

2.5. nuts: Integration

• Solid integration with environments

◦ Uses OS’s File System Layouts (XDG for Linux, …)

▪ separate folders per app

▪ separate folders for log, config, lib, cache, etc.

▪ portable across OSes (~/.config versus ~/AppData)

◦ Supports cmdline and gui apps (installs scripts, icons, menus, …)

◦ Supports jar and zip based apps

nuts, the Java Package Manager

29

2.6. nuts: Toolbox

• Terminal Coloring on Linux/Windows
• Supports Windows cmd/PowerShell and *NIX sh, bash, csh, zsh and
fish and their relative rcfiles

• Bundles a bash/GNU binutils compatible (still incomplete) but
enhanced java implementations

◦ ls, cp, touch, mkdir, rmdir, …

◦ works on windows

◦ adds some extra goodies (ssh, json, support …)

nuts, the Java Package Manager

30

2.7. nuts: Existing Apps

• Supports out of the box

◦ maven 's repos (including central, spring, google, …), more than 7M
dependencies

◦ Apache repos (netbeans, tomcat, derby, etc…)

nuts, the Java Package Manager

31

2.8. nuts: Automation

• Powerful toolbox with customizable output formats

◦ props

◦ xml

◦ json

◦ yaml

◦ table

◦ tree

nuts, the Java Package Manager

32

2.9. nuts: Unique features

• Is statically built and has (almost) no dependencies
• Can be used as a library to support transitive ClassPath resolution
• Has a clean and rich API

nuts, the Java Package Manager

33

2.10. nuts: Stability

• Tested:

◦ over 160 regression tests with 3500+ lines of test-code in the
repository.

◦ opensuse, ubuntu, docker, windows7, windows10

◦ sh, bash, csh, zsh, fish

nuts, the Java Package Manager

34

2.11. 'nuts'… really?

• N etwork U pdatable T hings S ervices
• The nuts (fool) companion for the maven (sage) in the Software

Kingdom’s Palace!

nuts, the Java Package Manager

35

3. Demonstration

3.1. Install Nuts

1. Download nuts.jar
2. Run java -jar nuts.jar -Zy
3. Restart your terminal

nuts, the Java Package Manager

36

3.2. Install Nuts (Linux)

• Install for Preview/Evaluation, most recent

$ wget https://thevpc.net/nuts/nuts-preview.jar -o nuts.jar
$ java -jar nuts.jar -Zy -r=+preview
$ exit

• Install for Production, most stable

$ wget https://repo.maven.apache.org/maven2/net/thevpc/nuts/nuts/0.8.3/nuts-0.8.3.jar
-O nuts.jar
$ java -jar nuts.jar -Zy
$ exit

• In all cases, do not forget to restart your terminal

nuts, the Java Package Manager

37

3.3. Run the app

• We just run the app
• No modification is required
• We use the already built (by maven) jar
• The "artifactId" is (almost) sufficient to resolve the application to install

nuts, the Java Package Manager

38

nuts, the Java Package Manager

39

3.4. Demonstration : Install Application

• Or we can install the app

◦ All required dependencies will be resolved and downloaded

◦ dependencies are shared across multiple apps

◦ multiple versions of the same dependencies can coexists (required
by different apps)

• And then we run it

nuts, the Java Package Manager

40

nuts, the Java Package Manager

41

3.5. Install Gui App

• We can run a gui app of course
• nuts will create for it

◦ a Desktop Shortcut (Icon)

◦ a Menu Item

nuts, the Java Package Manager

42

nuts, the Java Package Manager

43

3.6. Search for available applications

• We can search for installed or available (local/remote) apps
• We can search for apps and/or libs

nuts, the Java Package Manager

44

3.7. Repositories

• We can configure Repositories used to install/update packages
• We can list Repositories used to install/update packages
• Supports

◦ Standard Maven Repositories

◦ Plain Folders

◦ Browsable HTTP folders (Parses HTML for common Webserver
Directory Lists)

nuts, the Java Package Manager

45

nuts, the Java Package Manager

46

3.8. Integration and Formats

• Customize any command’s output to use structured/parsable or user
friendly output formats

• All Commands support options!

◦ structured (parsable) : --json, --xml, --props, --yaml

◦ unstructured : --plain, --table , --tree

nuts, the Java Package Manager

47

nuts, the Java Package Manager

48

3.9. Companions

• We can use nsh instead of bash / cmd
• Implements common internal bash commands (cd,…) and constructs

(pipes,…)
• Implements common binutils commands (ls,mkdir,….)
• All commands support json (and yaml, …) out of the box
• All commands support ssh and extended path format (including URLS)

out of the box, so that cp can be used as a simple alternative to wget

nuts, the Java Package Manager

49

nuts, the Java Package Manager

50

3.10. Bot Mode

• Running with --bot will disable all interaction and terminal coloring

nuts, the Java Package Manager

51

3.11. Help

• An extensive help is available from within the command line

nuts, the Java Package Manager

52

3.12. Conclusion

• nuts tries to be for java what npm is for javascript
• nuts is a versatile toolbox
• nuts is 2800+ classes, 600ko+ boot jar
• I invite you to

◦ Take a shot, try to use it and give feedback

◦ Star(*) the repository https://github.com/thevpc/nuts

◦ Spread the word

◦ Join the Core Team to enhance nuts

nuts, the Java Package Manager

53

https://github.com/thevpc/nuts
https://github.com/thevpc/nuts
https://github.com/thevpc/nuts
https://github.com/thevpc/nuts
https://github.com/thevpc/nuts

Thank you

please support us by starring our repo at

https://github.com/thevpc/nuts (git repo)

https://thevpc.github.io/nuts (website)

nuts.packagemanager@gmail.com

nuts, the Java Package Manager

54

https://github.com/thevpc/nuts
https://github.com/thevpc/nuts
https://github.com/thevpc/nuts
https://github.com/thevpc/nuts
https://github.com/thevpc/nuts
https://thevpc.github.io/nuts
https://thevpc.github.io/nuts
https://thevpc.github.io/nuts
mailto:nuts.packagemanager@gmail.com

	nuts, the Java Package Manager
	1. Why a Package Manager
	1.1. Java Package Manager?
	1.2. Example
	1.3. pom.xml
	1.4. Example
	1.5. Alternatives for deployment
	1.6. Java Web start
	1.7. System PM / Installers
	1.8. JPackage jlink
	1.9. Portable Installers
	1.10. Custom Deployers
	1.11. Fat Packages: maven-dependency-plugin
	1.12. Fat Jars : Uber Jar
	1.13. Fat Jars : Jar Jar
	1.14. So…

	2. nuts Package Manager for Java
	2.1. nuts: A Package Manager for Java
	2.2. nuts: A Package Manager for Java
	2.3. nuts: Maven & Gradle
	2.4. nuts: Dependency Optimization
	2.5. nuts: Integration
	2.6. nuts: Toolbox
	2.7. nuts: Existing Apps
	2.8. nuts: Automation
	2.9. nuts: Unique features
	2.10. nuts: Stability
	2.11. 'nuts'… really?

	3. Demonstration
	3.1. Install Nuts
	3.2. Install Nuts (Linux)
	3.3. Run the app
	3.4. Demonstration : Install Application
	3.5. Install Gui App
	3.6. Search for available applications
	3.7. Repositories
	3.8. Integration and Formats
	3.9. Companions
	3.10. Bot Mode
	3.11. Help
	3.12. Conclusion

